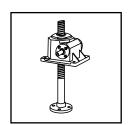
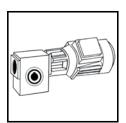


**ER** Worm Gears

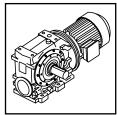



Worm Gears CER-2.01GB0415

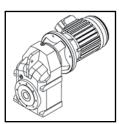
### PRODUCTS IN THE RANGE


Serving an entire spectrum of mechanical drive applications from food, energy, mining and metal; to automotive, aerospace and marine propulsion, we are here to make a positive difference to the supply of drive solutions.

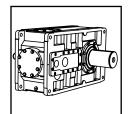



Series A
Worm Gear units
and geared motors
in single & double
reduction types

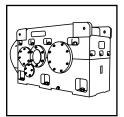



**Series BD** Screwjack worm gear unit

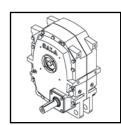



**Series BS** Worm gear unit

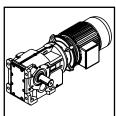



**Series C**Right angle drive helical worm geared motors & reducers

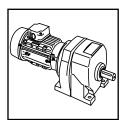



**Series F**Parallel shaft helical geared motors & reducers




Series G Helical parallel shaft & bevel helical right angle drive gear units

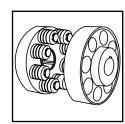



Series H Large helical parallel shaft & bevel helical right angle drive units

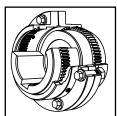


**Series J**Shaft mounted helical speed reducers




Series K Right angle helical bevel helical geared motors & reducers

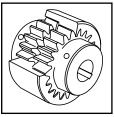



Series M
In-line helical geared motors & reducers

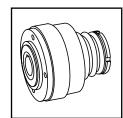


Roloid Gear Pump Lubrication and fluid transportation pump




Series X
Cone Ring
Pin and bush
elastomer coupling




Series X
Gear
Torsionally rigid,
high torque coupling



Service & Repair
All brands and types



Series X Nylicon Gear coupling with nylon sleeve



Series X
Torque Limiter
Overload protection
device



We offer a wide range of repair services and many years experience of repairing demanding and highly critical transmissions in numerous industries.

### INTRODUCTION

### Introduction

ER Series worm gear units are identical replacements for David Brown (Radicon) heavy duty worm gear units in all types :

- (a) Underdriven ER U
- (b) Overdriven ER O
- (c) Vertical ER V

Which are identical in:

- 1. Foundation hole dimensions and size of hole
- 2. Distance from bottom base to input centreline
- 3. Input/Output shaft dimensions

Ratings are also comparable to David Brown (Radicon) worm gear units.

#### **Gear Case**

Gear case is of streamlined design, rugged in construction, made of close-grain cast iron. It is completely oiltight, dust-proof and capable of being installed in the open without a separate cover. The faces and bores are accurately bored and machined on latest precision machines to ensure perfect alignment and interchangeability.

### Worm/Worm Wheel

The worm is made of case-hardened alloy steel, carburised, ground and polished and is integral with the shaft. Bearing journals are accurately ground. Worm wheels are made of centrifugally cast phosphor-bronze rims, shrink fitted and brazed onto Cast Iron centres. Worms are generated on special-purpose worm milling machines, gas carburised and ground on CNC grinding machines.

Worm wheels are hobbed on precision hobbing machines with high accuracy hobs. Each and every wheel is checked to match with the master worms to ensure complete interchangeability. Right-hand threads are provided, unless otherwise specified.

### **Bearings**

The worms and worm wheels are supported on ball or roller anti-friction bearings of ample margin of safety to allow adequate journal as well as thrust loads. When a sprocket, gear etc is to be mounted on either shaft, then full details should be forwarded to our application engineers.

#### Wheel Shaft

The wheel shaft is made of high tensile carbon steel. It is of large diameter to carry the torsional as well as bending loads which may be induced by overhung drives.

#### Lubrication

Lubrication to gears and bearings is by splash of oil from the sump. Thus, no special care is required except for the occasional topping up of the oil to the required level. A large oil filler-cum-breather and an inspection cover is provided together with a drain plug and ventilator. Neoprene lip-type oil seals are fitted on input and output shaft. For very low input speed below 50 rpm. and heavy loads in sizes larger than 14", forced lubrication is required. In such cases details should be forwarded to our application engineers.

### Cooling

Air cooling is effected by means of standard polypropylene or metal fans which direct a continuous flow of air over the ribbed surface of the gear unit. The fan is designed to operate in both direction of rotation, and is so arranged in conjunction with the ribbing on the gear unit as to allow maximum heat dissipation.

### Holdback

Sprag type holdback can be fitted on all sizes of gears to prevent reverse rotation. In cases where holdback is requied, the direction of rotation of the shaft should be mentioned.

### **Power Ratings**

The ratings indicated in the catalogue holds good for 12 hours of continuous running under uniform load being driven by electric motor. They give minimum gear life of 26,000 hours, subject to limitation of maximum oil temperature of 100°C under full load, 20°C ambient.

### **Overloads**

All the components of the reduction gears are so designed that they can withstand.

- \* 100 per cent overload for 15 seconds
- \* 50 per cent overload for one minute
- \* 40 per cent overload for 30 minutes and
- \* 25 per cent overload for two hours.

## LOAD CLASSIFICATION BY APPLICATIONS

### Table 1

U = Uniform load

M = Moderate shock load

H = Heavy shock load

† = Refer to our Application Engineers

| Driven Machine                                                                                                                                                      | type of load               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Agitators<br>pure liquids<br>liquids and solids<br>liquids-variable density                                                                                         | U<br>M<br>M                |
| Blowers<br>centrifugal<br>lobe<br>vane                                                                                                                              | U<br>M<br>U                |
| Brewing and distilling<br>bottling machinery<br>brew kettles-continuous<br>duty<br>cookers-continuous duty<br>mash tubs-continuous<br>duty<br>scale hopper-frequent | M<br>M<br>M                |
| starts  Can filling machines                                                                                                                                        | M<br>M                     |
| Cane knifes Car dumpers                                                                                                                                             | M<br>H                     |
| Car pullers                                                                                                                                                         | M                          |
| Clarifiers<br>Classifiers                                                                                                                                           | U<br>M                     |
| Clay working<br>machinery<br>brick press<br>briquette machine<br>clay working machinery<br>pug mill                                                                 | H<br>H<br>M<br>M           |
| Compressors centrifugal lobe reciprocating multi-cylinder single cylinder                                                                                           | U<br>M<br>M<br>H           |
| Conveyors-uniformly loaded or fed apron assembly belt bucket chain flight oven screw                                                                                |                            |
| Conveyors-heavy duty not uniformly fed apron assembly belt bucket chain flight live roll oven reciprocating screw shaker                                            | M<br>M<br>M<br>M<br>H<br>H |

| Driven Machine                                 | type of load            | Driven Machine                                     | type of load | Driven Machine                                    | type of load |
|------------------------------------------------|-------------------------|----------------------------------------------------|--------------|---------------------------------------------------|--------------|
| Cranes                                         |                         | log haul-incline                                   | Н            | log haul                                          | Н            |
| main hoists                                    | †                       | log haul-well type                                 | Н            | presses                                           | M            |
| bridge travel                                  | Ţ                       | log turning device                                 | H<br>H       | pulp machine reel                                 | M<br>M       |
| trolley travel                                 | ı                       | main log conveyor off bearing rolls                | M            | stock chest<br>suction roll                       | M            |
| Crusher                                        |                         | planer feed chains                                 | M            | washers and thickeners                            | M            |
| ore<br>stone                                   | H<br>H                  | planer floor chains                                | M<br>M       | winders                                           | M            |
| sugar                                          | H                       | planer tilting hoist re-saw merry-go-round         | IVI          | Printing presses                                  | t            |
|                                                |                         | conveyor                                           | M            |                                                   | '            |
| Dredges<br>cable reels                         | М                       | roll cases<br>slab conveyor                        | H            | Pullers<br>barge haul                             | н            |
| conveyors                                      | M                       | small waste                                        | '''          | barge riadi                                       | "            |
| cutter head drives                             | H                       | conveyor-belt                                      | U            | Pumps                                             |              |
| jig drives<br>manoeuvring winches              | H<br>M                  | small waste<br>conveyor-chain                      | М            | centrifugal<br>proportioning                      | U<br>M       |
| pumps                                          | M                       | sorting table                                      | M            | reciprocating                                     |              |
| screen drive                                   | H<br>M                  | tipple hoist conveyor                              | M<br>M       | single acting; 3 or                               | М            |
| stackers<br>utility winches                    | M                       | tipple hoist drive<br>transfer conveyors           | M            | more cylinders<br>double acting; 2 or             | IVI          |
| <b>≓</b> _ ´                                   |                         | transfer rolls                                     | M            | more cylinders                                    | М            |
| Dry dock cranes<br>main hoist                  | +                       | tray drive<br>trimmer feed                         | M<br>M       | single acting; 1 or 2<br>cylinders                | †            |
| auxiliary hoist                                | †                       | waste conveyor                                     | M            | double acting; single                             | '            |
| boom, luffing                                  | . İ                     | -                                                  |              | cylinder                                          | †            |
| rotating, swing or slew tracking, drive wheels | , †<br>†<br>†<br>†<br>† | Machine tools<br>bending roll                      | М            | rotary<br>gear type                               | U            |
|                                                | '                       | punch press-gear driven                            | Ĥ            | lobe, vane                                        | Ŭ            |
| Elevators bucket-uniform load                  | U                       | notching press- belt<br>driven                     | +            | Rubber and plastics                               |              |
| bucket-heavy load                              | M                       | plate planers                                      | Н            | industries                                        |              |
| bucket-continuous                              | U                       | tapping machine                                    | H            | crackers                                          | Н            |
| centrifugal discharge escalators               | U<br>U                  | other machine tools<br>main drives                 | М            | laboratory equipment<br>mixed mills               | M<br>H       |
| freight                                        | M                       | auxiliary drives                                   | Ü            | refiners                                          | M            |
| gravity discharge<br>man lifts                 | Ų                       | Metal mills                                        |              | rubber calenders                                  | M<br>M       |
| passenger                                      | ‡                       | draw bench carriage                                |              | rubber mill-2 on line<br>rubber mill-3 on line    | M            |
| 1_                                             | ·                       | and main drive                                     | M            | sheeter                                           | M            |
| Fans<br>centrifugal                            | U                       | pinch, dryer and scrubber rolls-reversing          | +            | tire building machines<br>tire and tube press     | †            |
| cooling towers                                 | Ü                       | slitters                                           | †<br>M       | openers                                           | t            |
| induced draft                                  | İ                       | table conveyors                                    |              | tubers and strainers                              | M            |
| forced draft induced draft                     | T<br>M                  | non-reversing<br>group drives                      | М            | warming mills                                     | М            |
| large, mine, etc                               | M                       | individual drives                                  | Ĥ            | Sand muller                                       | M            |
| large, industrial light, small diameter        | M<br>U                  | reversing<br>wire drawing and                      |              | Sewage disposal                                   |              |
| light, small diameter                          | J                       | flattening machine                                 | M            | equipment                                         |              |
| Feeders                                        | М                       | wire winding machine                               | M            | bar screens                                       | U            |
| apron<br>belt                                  | M                       | Mill-rotary type                                   |              | chemical feeders collectors                       | Ü            |
| disc                                           | Ų                       | ball                                               | H            | dewatering screws                                 | M            |
| reciprocating screw                            | H<br>M                  | cement kilns<br>dryers and coolers                 | H            | scum breakers<br>slow or rapid mixers             | M<br>M       |
|                                                |                         | kilns, other than cement                           | Н            | thickeners                                        | M            |
| Food industry                                  | М                       | pebble<br>rod                                      | Н            | vacuum filters                                    | М            |
| beef slicer<br>cereal cooker                   | Ü                       | plain                                              | Н            | Screens                                           |              |
| dough mixer                                    | M                       | wedge bar                                          | H            | air washing                                       | Ų            |
| meat grinders                                  | M                       | tumbling barrels                                   | Н            | rotary-stone or gravel<br>travelling water intake | M<br>U       |
| Generators-not                                 |                         | Mixers                                             |              |                                                   |              |
| welding                                        | U                       | concrete mixers<br>-continuous                     | М            | Slab pushers                                      | М            |
| Hammer mills                                   | Н                       | concrete mixers                                    |              | Steering gear                                     | †            |
| Hoists                                         |                         | -intermittent                                      | M            |                                                   |              |
| Hoists<br>heavy duty                           | Н                       | constant density variable density                  | U<br>M       | Stokers                                           | U            |
| medium duty                                    | M                       |                                                    |              | Sugar industry                                    |              |
| skip hoist                                     | М                       | Oil industry<br>chillers                           | М            | cane knives<br>crushers                           | M<br>M       |
| Laundry washers                                |                         | oil well pumping                                   | †            | mills                                             | M            |
| reversing                                      | М                       | paraffin filter press                              | M            | Tavitila industru                                 |              |
| Laundry tumblers                               | М                       | rotary kilns                                       | М            | Textile industry<br>batchers                      | М            |
| 1                                              |                         | Paper mills                                        |              | calenders                                         | M            |
| Line shafts<br>driving processing              |                         | agitators, (mixers)<br>barker-auxiliarieshydraulio | o M<br>M     | cards<br>dry cans                                 | M<br>M       |
| equipment                                      | M                       | barker-mechanical                                  | Н            | dryers                                            | M            |
| light other line shafts                        | U<br>U                  | barking drum                                       | H<br>M       | dyeing machinery                                  | M            |
| Other line shalls                              | J                       | beater and pulper<br>bleacher                      | U            | knitting machines<br>looms                        | †<br>M       |
| Lumber industry                                | hamia-l                 | calenders                                          | М            | mangles                                           | M            |
| barkers-hydraulicmecl                          | hanical M<br>M          | calenders-super converting machine,                | Н            | nappers<br>pads                                   | M<br>M       |
| chain saw and drag sa                          | aw H                    | except cutters, platers                            | М            | range drives                                      | Ť            |
| chain transfer craneway transfer               | H<br>H                  | conveyors<br>couch                                 | U<br>M       | slashers                                          | M<br>M       |
| de-barking drum                                | H                       | cutters-plates                                     | H            | soapers<br>spinners                               | M            |
| edger feed                                     | M                       | cylinders                                          | M            | tenter frames                                     | M            |
| gang feed<br>green chain                       | M<br>M                  | dryers<br>felt stretcher                           | M<br>M       | washers<br>winders                                | M<br>M       |
| live rolls                                     | Н                       | felt whipper                                       | Н            |                                                   |              |
| log deck                                       | Н                       | jordans                                            | М            | Windlass                                          | †            |
|                                                |                         |                                                    |              |                                                   |              |

# **EXPLANATION & USE OF RATINGS & SERVICE FACTORS**

### **Explanation And Use Of Ratings And Service Factors.**

Gear unit selection is made by comparing actual loads with catalogue ratings. Catalogue ratings are based on a standard set of loading conditions whereas actual load conditions vary according to type of application. Service factors are therefore used to calculate an equivalent load to compare with catalogue ratings.

### Mechanical Ratings and Service Factor (FM)

Mechanical ratings measure capacity in terms of life and/or strength assuming 12 hr/day continuous running under uniform load conditions. Catalogue ratings allow 100% overload at starting, breaking or momentarily during operations up to 12 hours per day.

Table 2 - Mechanical Service Factor (FM)

| Duimes messes             | Duration of service hrs | Load classi | fication - driv   | en machine  |
|---------------------------|-------------------------|-------------|-------------------|-------------|
| Prime mover               | per day<br>service      | Uniform     | Moderate<br>Shock | Heavy Shock |
| Electric motor,           | Under: 3                | 0.8         | 1                 | 1.5         |
| steam turbine or          | 3 to 10                 | 1           | 1.25              | 1.75        |
| hydraulic motor           | Over 10 to 24           | 1.25        | 1.5               | 3           |
| Multi-cylinder            | Under: 3                | 1           | 1.25              | 1.75        |
| internal, combustion      | 3 to 10                 | 1.25        | 1.5               | 2           |
| engine                    | Over 10 to 24           | 1.5         | 1.75              | 2.25        |
| Single cylinder internal, | Under : 3               | 1.25        | 1.5               | 2           |
| combustion                | 3 to 10                 | 1.5         | 1.75              | 2.25        |
| engine<br>combustion      | Over 10 to 24           | 1.75        | 2                 | 2.5         |

 For Units subject to frequent starts/stops and overloads, also applications where high inertia loads are involved e.g. crane travel drives, slewing motion etc, please contact our application engineers.

### Thermal ratings and Thermal service factor (FT)

Thermal ratings measure a unit's ability to dissipate heat, if they are not exceeded, the lubricant may overheat and break down resulting in failure of gear unit. Thermal ratings are affected by ambient temperature and not by mechanical considerations such as increased running time and shock loads. Catalogue ratings are given on 20°C ambient temperature allowing for a lubricant temperature rise to 100°C during operation as the unit transmit power and generate heat. Thermal ratings calculated with unit fan cooling. Thermal service factor FT (Table No. 3) is used to modify the actual load according to prevailing ambient temperature.

Table 3 - Thermal Service Factor (FT)

| Ambient Temp °C | 10   | 20   | 30   | 40   | 50   | 60   |
|-----------------|------|------|------|------|------|------|
| factor          | 0.87 | 1.00 | 1.16 | 1.35 | 1.62 | 1.97 |

If the ambient temperature is other than 20°C, divide the catalogue thermal rating by the factor from Table No. 3

### **EXAMPLE SELECTIONS**

= 30:1

### Example - 1

Step:1

Step: 2

Worm reduction gear having input (worm) above the wheel required for belt conveyor where non-uniform material is fed on conveyor belt, operating for 8 hours per day. Speed required at conveyor shaft is 50 rpm. The gear unit is driven directly using coupling by 30 KW, 1500 rpm electric motor.

1500

50

Drive m/c - Belt Conveyor

Material - Non uniform fed

From Table No. 2

Type of Load

Ratio required

From Table No 1.

Mechanical service factor (Fm) = 1.25 for 8 hr/day operation

Input Speed

**Output Speed** 

Moderate Shock (M)

Step: 3 Input power = Motor Power x Fm

= 30 x 1.25 = 37.5 Kw

From Catalogue - Rating at Input 1500 rpm, Ratio 30:1

Gear unit size : 10 Ratio - 30:1

Input Power = 40 Kw

Gear unit/type/size : 10 ER-O, Ratio - 30:1

### Example - 2

Worm reduction gear unit underdriven type is required to drive a bucket elevator heavily loaded, operating 24 hours per day at 29 rpm, transmitting 30 KW. The gear unit is directly driven using coupling by a 1500 rpm electric motor. The ambient temperature is 30°C on plant.

Step: 1 Ratio required = Input Speed 1500 Output Speed 29 = 50:1 (nearest standard ratio)

**Step: 2** From Table No 1.

Drive m/c - Bucket Elevator (heavily Loaded)

Type of Load - Moderate Shock (M)

From Table No. 2

Mechanical service factor (Fm) = 1.50 for 24 hr/day continuous operation

Step: 3 Equivalent output power (mechanical) = 30 x 1.5 = 45 Kw

Equivalent output torque (mechanical) =  $\frac{9550 \times 45}{29}$  = 14818.96 Nm

From Catalogue.

Refer rating at input speed 1500 rpm, Ratio - 50:1.

Gear unit size 14, ratio 50:1 having output torque (mechanical) = 16457.4 Nm

Input Power (mechanical) = 62 Kw

**Step: 4** From Table No. 3 Thermal service factor (Ft) = 1.16

For an ambient temprature of 30°C

Equivalent output power (Thermal) = 30 Kw x 1.16

= 34.8 Kw

 $= \frac{9550 \times 45}{29} = 11460 \text{ Nm}.$ 

### **EXAMPLE SELECTIONS**

### **Step: 5** From the catalogue, the rating at input speed 1500 rpm, and ratio - 50:1, for a size 14" unit:

Output torque (thermal) = 10486.9 Nm, which is less than calculated equivalent

Output torque (thermal) = 11460 Nm

The higher gear unit size 17 ER-U, ratio - 50:1 should be selected.

Input speed 1500rpm, output torque (mechanical) = 29064 Nm, Input power (mechanical) = 110 Kw

### Required Input power

= Calculated equivalent output torque (Mech.) x Rated power (Mech.)

rated output torque (Mech.) x Fm

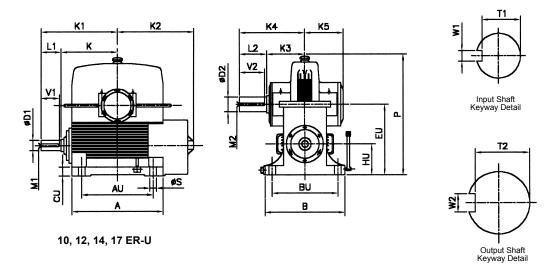
$$= \frac{14818.96 \times 110}{29064 \times 1.5} = 37.39 \text{ Kw}$$

Nearest standard motor having 37Kw at 1500 rpm an be selected for the application.

# RATINGS

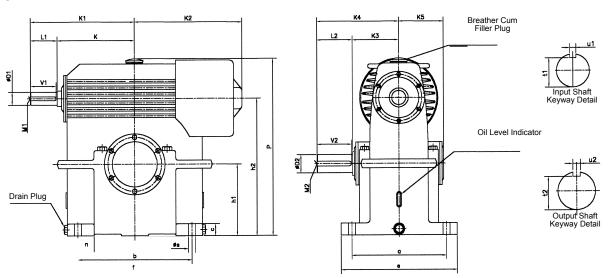
### Ratings At Input Speed 1450 RPM

| GEAD DATIO | OUTDUT SDEED DOW | CADACITY                   |      | SIZE O | F UNIT |       |
|------------|------------------|----------------------------|------|--------|--------|-------|
| GEAR RATIO | OUTPUT SPEED RPM | CAPACITY                   | 10   | 12     | 14     | 17    |
|            |                  | INPUT MECH. POWER (KW)     | 123  | 196    | 274    | *     |
| 5          | 300              | OUTPUT MECH. TORQUE (Nm)   | 3700 | 5494   | 8225   | *     |
| 5          | 300              | INPUT THERMAL POWER (KW)   | 90   | 119    | 162    | *     |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 2708 | 3777   | 4857   | *     |
|            |                  | INPUT MECH. POWER (KW)     | 92   | 128    | 184    | *     |
| 7.5        |                  | OUTPUT MECH. TORQ;UE (Nm)  | 4129 | 5700   | 8280   | *     |
| 7.5        | 200              | INPUT THERMAL POWER (KW)   | 76   | 109    | 150    | *     |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 3411 | 4807   | 6675   | *     |
|            |                  | INPUT MECH. POWER (KW)     | 65   | 111    | 162    | 320   |
| 40         |                  | OUTPUT MECH. TORQUE (Nm)   | 3807 | 6557   | 9635   | 19355 |
| 10         | 150              | INPUT THERMAL POWER (KW)   | 62   | 99     | 141    | 200   |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 3632 | 6165   | 8358   | 12224 |
|            |                  | INPUT MECH. POWER (KW)     | 58   | 81     | 150    | 249   |
|            |                  | OUTPUT MECH. TORQUE (Nm)   | 4985 | 7132   | 13349  | 21877 |
| 15         | 100              | INPUT THERMAL POWER (KW)   | 56   | 76     | 110    | 177   |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 4813 | 6670   | 9790   | 15721 |
|            |                  | INPUT MECH. POWER (KW)     | 55   | 75     | 123    | 216   |
|            |                  | OUTPUT MECH. TORQUE (Nm)   | 6303 | 8619   | 14288  | 25029 |
| 20         | 75               | INPUT THERMAL POWER (KW)   | 48   | 63     | 94     | 160   |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 5501 | 7240   | 10955  | 18366 |
|            |                  | INPUT MECH. POWER (KW)     | 45   | 68     | 110    | 172   |
|            |                  | OUTPUT MECH. TORQUE (Nm)   | 6303 | 9380   | 14695  | 24365 |
| 25         | 60               | INPUT THERMAL POWER (KW)   | 39   | 50     | 72     | 135   |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 5463 | 6948   | 9947   | 19124 |
|            |                  | INPUT MECH. POWER (KW)     | 40   | 56     | 92     | 158   |
|            |                  | OUTPUT MECH. TORQUE (Nm)   | 6494 | 9339   | 14652  | 26557 |
| 30         | 50               | INPUT THERMAL POWER (KW)   | 32   | 45     | 61     | 121   |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 5195 | 7505   | 9761   | 20337 |
|            |                  | INPUT MECH. POWER (KW)     | 34   | 51     | 76     | 119   |
|            |                  | OUTPUT MECH. TORQUE (Nm)   | 7360 | 10830  | 16137  | 26063 |
| 40         | 37.5             | INPUT THERMAL POWER (KW)   | 25   | 37     | 48     | 93    |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 5412 | 7858   | 10193  | 20131 |
|            |                  | INPUT MECH. POWER (KW)     | 28   | 44     | 62     | 110   |
|            |                  | OUTPUT MECH. TORQUE (Nm)   | 7131 | 11404  | 16457  | 29064 |
| 50         | 30               | INPUT THERMAL POWER (KW)   | 22   | 31     | 40     | 82    |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 5603 | 8741   | 10487  | 21300 |
|            |                  | INPUT MECH. POWER (KW)     | 24   | 37     | 55     | 78    |
|            |                  | OUTPUT MECH. TORQUE (Nm)   | 7243 | 11092  | 17521  | 25327 |
| 60         | 25               | INPUT THERMAL POWER (KW)   | 18   | 28     | 34     | 45    |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 5432 | 8397   | 10702  | 17713 |
|            |                  | INPUT MECH. POWER (KW)     | 21   | 32     | 46     | 75    |
|            |                  | OUTPUT MECH. FOWER (RW)    | 7310 | 11207  | 16716  | 27445 |
| 70         | 21.4             | ` ,                        | 20   | 23     | 28     | 57    |
|            |                  | INPUT THERMAL TOPOLIE (Nm) | +    |        |        |       |
|            |                  | OUTPUT THERMAL TORQUE (Nm) | 6962 | 7880   | 10320  | 20457 |


# **RATINGS**

### Ratings At Input Speed 960 RPM

| OF AD DATIO | OUTDUT OREED DOM | CARACITY                   |      | SIZE  | OF UNIT |        |
|-------------|------------------|----------------------------|------|-------|---------|--------|
| GEAR RATIO  | OUTPUT SPEED RPM | CAPACITY                   | 10   | 12    | 14      | 17     |
|             |                  | INPUT MECH. POWER (KW)     | 99   | 152   | 223     | *      |
| _           | 000              | OUTPUT MECH. TORQUE (Nm)   | 4570 | 6835  | 9717    | *      |
| 5           | 200              | INPUT THERMAL POWER (KW)   | 70   | 100   | 154     | *      |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 3209 | 4450  | 6710    | *      |
|             |                  | INPUT MECH. POWER (KW)     | 72   | 110   | 152     | *      |
|             |                  | OUTPUT MECH. TORQ;UE (Nm)  | 4928 | 7361  | 9835    | *      |
| 7.5         | 133              | INPUT THERMAL POWER (KW)   | 57   | 80    | 132     | *      |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 3880 | 5353  | 8535    | *      |
|             |                  | INPUT MECH. POWER (KW)     | 51   | 92    | 134     | 268    |
|             |                  | OUTPUT MECH. TORQUE (Nm)   | 4481 | 8187  | 11301   | 24310  |
| 10          | 100              | INPUT THERMAL POWER (KW)   | 49   | 70    | 111     | 160    |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 4305 | 6229  | 9359    | 14102  |
|             |                  | INPUT MECH. POWER (KW)     | 45   | 68    | 125     | 220    |
|             |                  | OUTPUT MECH. TORQUE (Nm)   | 5863 | 8882  | 15627   | 28979  |
| 15          | 66.7             | INPUT THERMAL POWER (KW)   | 41   | 60    | 97      | 139    |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 5342 | 7838  | 12076   | 18349  |
|             |                  | INPUT MECH. POWER (KW)     | 42   | 62    | 102     | 209    |
|             |                  | OUTPUT MECH. TORQUE (Nm)   | 7140 | 10565 | 16628   | 35528  |
| 20          | 50               | INPUT THERMAL POWER (KW)   | 33   | 49    | 84      | 132    |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 5610 | 8358  | 13298   | 21430  |
|             |                  | INPUT MECH. POWER (KW)     | 33   | 53    | 80      | 128    |
|             |                  | OUTPUT MECH. TORQUE (Nm)   | 6776 | 11125 | 15922   | 27198  |
| 25          | 40               | INPUT THERMAL POWER (KW)   | 28   | 40    | 67      | 89     |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 5749 | 8530  | 13361   | 189114 |
|             |                  | INPUT MECH. POWER (KW)     | 30   | 48    | 73      | 120    |
|             |                  | OUTPUT MECH. TORQUE (Nm)   | 7399 | 11884 | 17181   | 30973  |
| 30          | 33.4             | INPUT THERMAL POWER (KW)   | 24   | 35    | 58      | 80     |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 5919 | 65    | 13705   | 20419  |
|             |                  | INPUT MECH. POWER (KW)     | 26   | 42    | 60      | 80     |
|             |                  | OUTPUT MECH. TORQUE (Nm)   | 8442 | 13381 | 18953   | 6282   |
| 40          | 25               | INPUT THERMAL POWER (KW)   | 19   | 31    | 36      | 62     |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 6007 | 9715  | 12135   | 20368  |
|             |                  | INPUT MECH. POWER (KW)     | 21   | 36    | 49      | 78     |
|             |                  | OUTPUT MECH. TORQUE (Nm)   | 8244 | 13489 | 19281   | 31286  |
| 50          | 20               | INPUT THERMAL POWER (KW)   | 16   | 24    | 35      | 60     |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 6341 | 8986  | 13737   | 23780  |
|             |                  | INPUT MECH. POWER (KW)     | 17   | 30    | 39      | 72     |
|             |                  | OUTPUT MECH. TORQUE (Nm)   | 8006 | 13293 | 18600   | 34174  |
| 60          | 16.7             | INPUT THERMAL POWER (KW)   | 13   | 22    | 26      | 50     |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 5947 | 9751  | 12302   | 23446  |
|             |                  | INPUT MECH. POWER (KW)     | 15   | 32    | 34      | 62     |
|             |                  | OUTPUT MECH. TORQUE (Nm)   | 7263 | 11207 | 17820   | 33539  |
| 70          | 14.3             | INPUT THERMAL POWER (KW)   | 12   | 19    | 22      | 43     |
|             |                  | OUTPUT THERMAL TORQUE (Nm) | 6011 | 9335  | 12027   | 23261  |

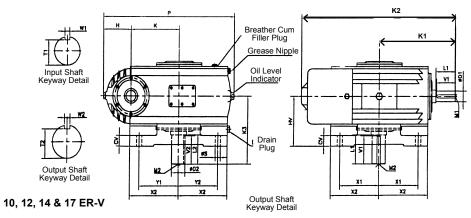

# **DIMENSIONS**

ER-U



| SIZES    |     |      | МО  | UNT | ING   | DET | AILS | 3    |      |        |      | INP  | JT SH | AFT DE | TAILS |     |      |      |         | 0   | UTP | UT S  | HAFT D | ETAILS | 3   |                  |     |
|----------|-----|------|-----|-----|-------|-----|------|------|------|--------|------|------|-------|--------|-------|-----|------|------|---------|-----|-----|-------|--------|--------|-----|------------------|-----|
| SIZES    | Α   | ΑU   | В   | BU  | cu    | os  | ΗU   | EU   | Р    | D1     | L1   | V1   | M1    | Ti     | W1    | κ   | K1   | K2   | D2      | L2  | V2  | M2    | T2     | W2     | КЗ  | K4               | K5  |
| 10 ER-U  | 500 | 122  | 120 | 220 | E0    | 22  | 172  | 126  | 730  | 55.030 | 90   | 85   | M20   | 49.0   | 16    | 225 | 125  | 460  | 85.035  | 150 | 117 | M20   | 76.0   | 22     | 222 | 275              | 200 |
| 10 EK-0  | 590 | 432  | 430 | 330 | 30    | 33  | 172  | 420  | 730  | 55.011 | 90   | 65   | IVIZU | 49.0   | 10    | 333 | 425  | 400  | 85.013  | 152 | 147 | IVIZU | 70.0   | 22     | 223 | 3/3              | 200 |
| 12 ER-U  | 690 | E21  | E40 | 260 |       | 22  | 101  | 405  | 860  | 60.030 | 104  | 120  | M20   | 53.0   | 18    | 271 | 405  | 505  | 95.035  | 170 | 165 | M20   | 86.0   | 25     | 242 | 412              | 210 |
| 12 ER-0  | 090 | 521  | 340 | 300 | 33    | 33  | ופו  | 495  | 800  | 60.011 | 124  | 120  | IVIZU | 55.0   | 10    | 371 | 495  | 505  | 95.013  | 170 | 105 | IVIZU | 60.0   | 25     | 243 | 413              | 210 |
| 14 ER-U  | 820 | 507  | 560 | 132 | 65    | 33  | 216  | 572  | 970  | 75.030 | 1/10 | 1/15 | M20   | 67.5   | 20    | 423 | 572  | 5/15 | 120.035 | 100 | 185 | M24   | 109    | 32     | 203 | 183              | 215 |
| 14 LIX-0 | 020 | 337  | 300 | 702 | 03    | 33  | 210  | 372  | 370  | 75.011 | 143  | 143  | 10120 | 07.5   | 20    | 723 | 372  | 343  | 120.013 | 130 | 100 | IVIZT | 103    | 52     | 233 | 700              | 213 |
| 17 ER-U  | 020 | 762  | 600 | 508 | 75    | 33  | 254  | 686  | 1185 | 80.030 | 190  | 175  | M20   | 71.0   | 22    | 520 | 700  | 650  | 140.040 | 203 | 200 | M30   | 128    | 36     | 343 | 546              | 300 |
| 17 ER-0  | 920 | 1,02 |     | 506 | ′ ′ ′ | 55  | 234  | 1000 | 1100 | 80.011 | 100  | 1/3  | IVIZU | 7 1.0  | - 22  | 320 | 1,00 | 030  | 140.015 | 203 | 200 | IVIOU | 120    | 30     | 343 | J <del>4</del> 0 | 300 |

### ER-O



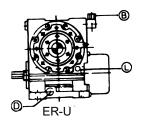

| SIZES    |     |      | M  | OUN | NTIN | G DE | TAI | LS  |     |      |        | - 1 | NPU | T SHA | AFT DE | TAILS | 3   |     |     |         |     | UTP | UT SH | AFT D | ETAIL | s    |     |     |
|----------|-----|------|----|-----|------|------|-----|-----|-----|------|--------|-----|-----|-------|--------|-------|-----|-----|-----|---------|-----|-----|-------|-------|-------|------|-----|-----|
| SIZES    | а   | b    | С  | е   | f    | n    | s   | h1  | h2  | Р    | D1     | L1  | V1  | M1    | Ti     | W1    | κ   | K1  | K2  | D2      | L2  | V2  | M2    | T2    | W2    | К3   | K4  | K5  |
| 10 ER-0  | 220 | 122  | E0 | 420 | E00  | 110  | 22  | 272 | 527 | 720  | 55.030 | 90  | 85  | M20   | 49.0   | 16    | 225 | 425 | 460 | 85.035  | 150 | 147 | M20   | 76.0  | 22    | 222  | 275 | 200 |
| IU EK-U  | 330 | 432  | 50 | 430 | 360  | 110  | 33  | 213 | 327 | 750  | 55.011 | 90  | 65  | IVIZU | 49.0   | 10    | 333 | 425 | 400 | 85.013  | 132 | 147 | IVIZU | 76.0  | 22    | 223  | 3/3 | 200 |
| 12 ER-0  | 260 | E21  | 55 | E40 | 620  | 105  | 22  | 220 | 625 | 960  | 60.030 | 124 | 120 | M20   | 53.0   | 18    | 271 | 495 | E0E | 95.035  | 170 | 165 | M20   | 86.0  | 25    | 242  | 412 | 210 |
| 12 ER-0  | 300 | 52 I | 55 | 340 | 030  | 123  | 33  | 330 | 033 | 800  | 60.011 | 124 | 120 | IVIZU | 55.0   | 10    | 371 | 495 | 505 | 95.013  | 170 | 103 | IVIZU | 80.0  | 20    | 243  | 413 | 210 |
| 14 ER-0  | 432 | 507  | 65 | 560 | 770  | 150  | 33  | 201 | 737 | 070  | 75.030 | 140 | 145 | M20   | 67.5   | 20    | 123 | 572 | 545 | 120.035 | 100 | 195 | M24   | 109   | 32    | 203  | 183 | 215 |
| 14 LIX-0 | 432 | 391  | 03 | 300 | 770  | 130  | 33  | 361 | 737 | 910  | 75.011 | 149 | 143 | IVIZU | 07.5   | 20    | 423 | 372 | 343 | 120.013 | 190 | 103 | IVIZ  | 109   | 32    | 293  | 400 | 213 |
| 17 ER-0  | 510 | 750  | 75 | സെ  | രാവ  | 170  | 33  | 460 | 802 | 1146 | 80.030 | 190 | 175 | M20   | 71.0   | 22    | 520 | 700 | 650 | 140.040 |     | 200 | M30   | 128   | 36    | 3/13 | 546 | 300 |
| 17 LK-0  | 310 | 750  | 73 | 000 | 920  | 170  | 33  | 400 | 092 | 1140 | 80.011 | 100 | 173 | IVIZU | 71.0   | 22    | 320 | 700 | 030 | 140.015 | 203 | 200 | IVIOU | 120   | 30    | 343  | 340 | 300 |

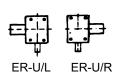
Key & Keyways as per B.S. 46 (part-1)

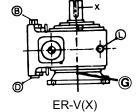
### **DIMENSIONS**

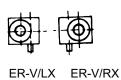
### **ER-V**

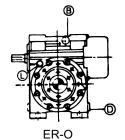


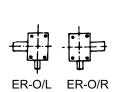

| 01750    |      |     | M   | OUN | ITIN | G DE | TAI | LS  |     |      |        |     | INF | UT SI | IAFT [      | DETAII | LS  |     |      |         | OUTF | PUT S | HAF   | DETA | ILS |     |
|----------|------|-----|-----|-----|------|------|-----|-----|-----|------|--------|-----|-----|-------|-------------|--------|-----|-----|------|---------|------|-------|-------|------|-----|-----|
| SIZES    | X1   | X2  | Y1  | Y2  | cv   | os   | нν  | Н   | K   | Р    | D1     | L1  | V1  | М1    | Ti          | W1     | K   | K1  | K2   | D2      | L2   | V2    | M2    | T2   | W2  | КЗ  |
| 10 ER-V  | 260  | 210 | 260 | 225 | 55   | 22   | 270 | 100 | 254 |      | 55.030 | 90  | 85  | M20   | 49.0        | 16     | 335 | 425 | 803  | 85.035  | 152  | 147   | M20   | 76.0 | 22  | 375 |
| IU EK-V  | 200  | 310 | 200 | 233 | 55   | 33   | 219 | 100 | 204 |      | 55.011 | 90  | 65  | IVIZU | 49.0        | 10     | 333 | 423 | 803  | 85.013  | 132  | 147   | IVIZU | 76.0 | 22  | 3/3 |
| 40 ED V  | 040  | 040 | 040 | 007 | 00   | 00   | 005 | 475 | 005 |      | 60.030 |     | 400 |       | <b>50.0</b> | 40     | 074 | 405 | 000  | 95.035  | 470  | 405   |       | 00.0 | 0.5 | 440 |
| 12 ER-V  | 318  | 310 | 318 | 207 | 60   | 33   | 305 | 1/5 | 305 |      | 60.011 | 124 | 120 | M20   | 53.0        | 18     | 371 | 495 | 936  | 95.013  | 170  | 165   | M20   | 86.0 | 25  | 413 |
|          |      |     |     |     |      |      |     |     |     |      | 75.030 |     |     |       |             |        |     |     |      | 120.035 |      |       |       |      |     |     |
| 14 ER-V  | 356  | 350 | 356 | 305 | 65   | 33   | 330 | 200 | 356 | 975  |        | 149 | 145 | M20   | 67.5        | 20     | 423 | 572 | 1093 |         | 190  | 185   | M24   | 109  | 32  | 483 |
|          |      |     |     |     |      |      |     |     |     |      | 75.011 |     |     |       |             |        |     |     |      | 120.013 |      |       |       |      |     |     |
| 17 ER-V  | 133  | 500 | 432 | 432 | 75   | 40   | 406 | 238 | 432 | 1190 | 80.030 | 180 | 175 | M20   | 71.0        | 22     | 520 | 699 | 1328 | 140.040 | 303  | 200   | M30   | 128  | 36  | 546 |
| III ER-V | 1432 | 300 | +32 | 432 | 13   | 40   | 400 | 230 | 432 |      | 80.011 | 100 | 1/3 | IVIZU | 7 1.0       | 22     | 320 | 099 | 1320 | 140.015 | 203  | 200   | IVIOU | 120  | 30  | 340 |

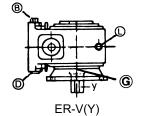

Key & Keyways as per B.S. 46 (part-1)

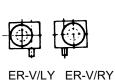

### **Mounting Positions And Shaft Handing**


- B Breather Plug
- D Drain Plug


- L Oil Level Indicator
- G Grease Nipple














ER-V/LT ER-V/KT

Replace G by plug for ER-V(X), V(Y) in bottom side.

### **GEAR RATIO**

### **Actual Gear Ratio**

| Size | 5   | 7.5  | 10   | 15    | 20    | 25   | 30   | 40 | 50 | 60 | 70 |
|------|-----|------|------|-------|-------|------|------|----|----|----|----|
| 10   | 4.8 | 7.33 | 9.75 | 14.67 | 19.5  | 24.5 | 29.5 | 40 | 50 | 60 | 70 |
| 12   | 4.9 | 7.43 | 9.8  | 14.67 | 20.5  | 24.5 | 29.5 | 40 | 50 | 60 | 70 |
| 14   | 5.1 | 7.57 | 9.8  | 14.67 | 20.33 | 24.5 | 30.5 | 39 | 49 | 61 | 69 |
| 17   | 5.1 | 7.37 | 9.8  | 14.75 | 19.66 | 25.5 | 29.5 | 40 | 50 | 60 | 71 |

### Overhung Loads:

Whenever a sprocket, gear, sheave or pulley is mounted on the output shaft, a calculation should be made to determine the overhung load in Newtons on the shaft, using the formula:

$$P = \frac{Kw \times 9550 \times K}{N \times R}$$

Where, P = equivalent overhung load in Newtons KW = power carried by shaft in Kilo Watts

N = r.p.m. of the shaft

R = pitch radius of sprocket, pinion, sheave or pulley in meter

K = factor

| Overhung Member  | K Factor |
|------------------|----------|
| Sprocket         | 1.00     |
| Spur Pinion      | 1.25     |
| V-belt Sheave    | 1.50     |
| Flat Belt Pulley | 2.00     |

The calculated equivalent overhung load should be compared with the permissible values given in the table.

# Maximum Permissible Overhung Loads (Newtons) At Centre Of Wheel Shaft Extention At 1500 R.P.M. Input Speed.

| D.4.T.I.O. | BEARING NEAR        |       | SIZE O | F UNIT  |         |
|------------|---------------------|-------|--------|---------|---------|
| RATIO      | SHAFT EXTENSION     | 10    | 12     | 14      | 17      |
| 5          | Standard Bearings   | 19550 | 22310  | 34654   |         |
| 5          | Reinforced Bearings | 29800 | 34650  | 50000   |         |
| 7.5        | Standard Bearings   | 21000 | 27000  | 40500   |         |
| 7.5        | Reinforced Bearings | 32000 | 36650  | 54975   |         |
| 10         | Standard Bearings   | 31000 | 32909  | 49363   | 55000   |
| 10         | Reinforced Bearings | 33000 | 46636  | 69954   | 99000   |
| 15         | Standard Bearings   | 28000 | 33050  | 50875   | 63594   |
| 15         | Reinforced Bearings | 40000 | 55120  | 87089   | 130633  |
| 20         | Standard Bearings   | 26700 | 33000  | 52080   | 65100   |
| 20         | Reinforced Bearings | 42000 | 57674* | 92000*  | 138000* |
| 25         | Standard Bearings   | 28000 | 32636  | 65270   | 78824   |
| 25         | Reinforced Bearings | 47700 | 57004* | 117068* | 151025* |
| 30         | Standard Bearings   | 29000 | 32800  | 67980   | 81576   |
| 30         | Reinforced Bearings | 51000 | 57800* | 127545* | 172185* |
| 40         | Standard Bearings   | 29000 | 31325  | 76726   | 88071   |
| 40         | Reinforced Bearings | 50450 | 63272* | 140745* | 182968* |
| 50         | Standard Bearings   | 31000 | 32080  | 83450   | 100148  |
| 50         | Reinforced Bearings | 52700 | 63305* | 154935* | 185922* |
| 60         | Standard Bearings   | 30000 | 34650  | 85535   | 102642  |
| 00         | Reinforced Bearings | 53000 | 67630* | 138050* | 179465* |
| 70         | Standard Bearings   | 26000 | 41580  | 86310   | 103572  |
| 70         | Reinforced Bearings | 56045 | 70950* | 143484* | 186530* |

<sup>\*</sup> Special Heat Treated Shaft is supplied

TRB = Taper Roller Bearing CRB = Cylindrical Roller Bearing

### **LUBRICATION**

### Weight & Oil Capacity

### **ER-U**

| Size                 | 10  | 12  | 14   | 17   |
|----------------------|-----|-----|------|------|
| Net Weight (kgs.)    | 450 | 580 | 885  | 1260 |
| Gross Weight (Kgs.)  | 595 | 900 | 1140 | 1700 |
| Oil Capacity (Itrs.) | 20  | 25  | 36   | 60   |

### **ER-V**

| Size                 | 10  | 12  | 14   | 17   |
|----------------------|-----|-----|------|------|
| Net Weight (kgs.)    | 440 | 660 | 870  | 1575 |
| Gross Weight (Kgs.)  | 560 | 845 | 1120 | 2000 |
| Oil Capacity (Itrs.) | 20  | 29  | 43   | 106  |

#### ER-O

| Size                 | 10  | 12  | 14   | 17   |
|----------------------|-----|-----|------|------|
| Net Weight (kgs.)    | 480 | 660 | 940  | 1380 |
| Gross Weight (Kgs.)  | 610 | 920 | 1180 | 1800 |
| Oil Capacity (Itrs.) | 22  | 27  | 38   | 95   |

- First filling of oil is not supplied with the gear unit.
- First change of oil should be made after 500 hrs. of operation
- Subsequent oil change must be made after every 3000 hrs. of operation. This interval should not exceed 12 months.

### **Recomended Lubricants**

### **Mineral Oil**

| Brand                | Grade                                                |
|----------------------|------------------------------------------------------|
| BP International Ltd | CS 320 or GR-XP320                                   |
| Castro!              | Alpha Zn 320 or Alpha Sp-320 or Tribol 1100/320 TGQA |
| Caltex               | Meropa 320                                           |
| Esso Petroleum       | Teresso 320 or Spartan 320                           |
| Fuchs                | Renolin CKC 320                                      |
| Mobil Oil Co.        | Mobil DTE Oil AA or Mobilgear 632                    |
| Shell                | Vitera Oil 320 or Omela 320                          |

### POLYGLYCOL BASED SYNTHETIC LUBRICANT

Use of polyglycol based synthetic lubricant is also advisable to improve the transmitting capacity (rating) of gear units min. 20% as compared with use of mineral oil at same working temperature. This gear oil shows excellent non-ageing stability with favourable influence on efficiency.

### **Aproved Synthetic Lubricants**

| Brand   | Grade          |
|---------|----------------|
| Castrol | Tribol 800-220 |
| Fuchs   | Renolin PG 220 |

Special Note: Synthetic Lubricants must not be mixed with any other type of oil. The gear unit must be flushed while changing to or from this lubricant.

# **IMPORTANT**

### **Product Safety Information**

**General** - The following information is important in ensuring safety. It **must** be brought to the attention of personnel involved in the selection of power transmission equipment, those responsible for the design of the machinery in which it is to be incorporated and those involved in its installation, use and maintenance.

Our equipment will operate safely provided it is selected, installed, used and maintained properly. As with any power transmission equipment **proper precautions must be taken** as indicated in the following paragraphs, to ensure safety.

**Potential Hazards** - these are not necessarily listed in any order of severity as the degree of danger varies in individual circumstances. It is important therefore that the list is studied in its entirety:-

#### 1) Fire/Explosion

- (a) Oil mists and vapour are generated within gear units. It is therefore dangerous to use naked lights in the proximity of gearbox openings, due to the risk of fire or explosion.
- (b) In the event of fire or serious overheating (over 300 °C), certain materials (rubber, plastics, etc.) may decompose and produce fumes. Care should be taken to avoid exposure to the fumes, and the remains of burned or overheated plastic/rubber materials should be handled with rubber gloves.
- 2) Guards Rotating shafts and couplings must be guarded to eliminate the possibility of physical contact or entanglement of clothing. It should be of rigid construction and firmly secured.
- 3) Noise High speed gearboxes and gearbox driven machinery may produce noise levels which are damaging to the hearing with prolonged exposure. Ear defenders should be provided for personnel in these circumstances. Reference should be made to the Department of Employment Code of Practice for reducing exposure of employed persons to noise.
- 4) Lifting Where provided (on larger units) only the lifting points or eyebolts must be used for lifting operations (see maintenance manual or general arrangement drawing for lifting point positions). Failure to use the lifting points provided may result in personal injury and/or damage to the product or surrounding equipment. Keep clear of raised equipment.
- 5) Lubricants and Lubrication
- (a) Prolonged contact with lubricants can be detrimental to the skin. The manufacturer's instruction must be followed when handling lubricants
- (b) The lubrication status of the equipment must be checked before commissioning. Read and carry out all instructions on the lubricant plate and in the installation and maintenance literature. Heed all warning tags. Failure to do so could result in mechanical damage and in extreme cases risk of injury to personnel.
- 6) Electrical Equipment Observe hazard warnings on electrical equipment and isolate power before working on the gearbox or associated equipment, in order to prevent the machinery being started.
- 7) Installation, Maintenance and Storage
- (a) In the event that equipment is to be held in storage, for a period exceeding 6 months, prior to installation or commissioning, we must be consulted regarding special preservation requirements. Unless otherwise agreed, equipment must be stored in a building protected from extremes of temperature and humidity to prevent deterioration.
- The rotating components (gears and shafts) must be turned a few revolutions once a month (to prevent bearings brinelling).
- (b) External gearbox components may be supplied with preservative materials applied, in the form of a "waxed" tape overwrap or wax film preservative. Gloves should be worn when removing these materials. The former can be removed manually, the latter using white spirit as a solvent.

Preservatives applied to the internal parts of the gear units do not require removal prior to operation.

- (c) Installation must be performed in accordance with the manufacturer's instructions and be undertaken by suitably qualified personnel.
- (d) Before working on a gearbox or associated equipment, ensure that the load has been removed from the system to eliminate the possibility of any movement of the machinery and isolate power supply. Where necessary, provide mechanical means to ensure the machinery cannot move or rotate. Ensure removal of such devices after work is complete.
- (e) Ensure the proper maintenance of gearboxes in operation. Use only the correct tools and our approved spare parts for repair and maintenance. Consult the Maintenance Manual before dismantling or performing maintenance work.
- 8) Hot Surfaces and Lubricants
  - (a) During operation, gear units may become sufficiently hot to cause skin burns. Care must be taken to avoid accidental contact.
  - (b) After extended running the lubricant in gear units and lubrication systems may reach temperatures sufficient to cause burns. Allow equipment to cool before servicing or performing adjustments.
- 9) Selection and Design
- (a) Where gear units provide a backstop facility, ensure that back-up systems are provided if failure of the backstop device would endanger personnel or result in damage.
- (b) The driving and driven equipment must be correctly selected to ensure that the complete machinery installation will perform satisfactorily, avoiding system critical speeds, system torsional vibration, etc.
- (c) The equipment must not be operated in an environment or at speeds, powers, torques or with external loads beyond those for which it was designed.
- (d) As improvements in design are being made continually the contents of this catalogue are not to be regarded as binding in detail, and drawings and capacities are subject to alterations without notice.

The above guidance is based on the current state of knowledge and our best assessment of the potential hazards in the operation of the gear units. Any further information or clarification required may be obtained by contacting our Application Engineers.